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Abstract 

This review describes the relation between the imagination and causal cognition, particularly 

with relevance to  recent developments in computational theories of human learning.  According 

to the Bayesian model of human learning, our ability to imagine possible worlds and engage in 

counterfactual reasoning is closely tied to our ability to think causally.  Indeed, the purpose and 

distinguishing feature of causal knowledge is that it allows one to generate counterfactual 

inferences.  We begin with a brief description of the “probabilistic models” framework of 

causality, and review empirical work in that framework which shows that adults and children use 

causal knowledge to generate counterfactuals. We also outline a theoretical argument that 

suggests that the imagination is central to the process of causal understanding.  We will then 

offer evidence that Bayesian learning implicates the imaginative process, and conclude with a 

discussion of how this computational method may be applied to the study of the imagination, 

more classically construed. 

Keywords 

Causal Reasoning, Bayes Nets, Imagination, Fictional Cognition, Counterfactuals 

 

Introduction (h1) 

Conventional wisdom suggests that knowledge and imagination, science and fantasy, are 

deeply different from one another – even opposites. However, new ideas about children’s causal 
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reasoning suggests that exactly the same abilities that allow children to learn so much about the 

world, reason so powerfully about it, and act to change it, also allow them to imagine alternative 

worlds that may never exist at all.  From this perspective, knowledge about the causal structure 

of the world is what allows for imagination, and what makes creativity possible.  It is because we 

know something about how events are causally related that we are able to imagine altering those 

relationships and creating new ones.   

A large portion of our psychological lives is spent engaging in counterfactual thought, 

planning and anticipating our future states, and considering near and far alternatives to the actual 

state of the world.  While the imagination has long been assumed to generate counterfactuals (see 

Harris, German, & Mills, 1996; Beck & Riggs, this volume), little research has explored how 

human minds, even the very youngest human minds, manage to produce these counterfactuals, 

how we know which possibilities will be the most likely to occur, and why imagining new 

possibilities is important. 

In this chapter, we propose that part of the answer is that our ability to imagine possible 

worlds is closely tied to our ability to think causally.  Recent work emphasizes the close two-way 

relationship between causal and counterfactual thought.  Indeed, the purpose of causal 

knowledge, and the feature that distinguishes it from other kinds of knowledge, is that it allows 

you to generate counterfactual inferences.  In particular, causal knowledge is useful, both 

ontogenetically and evolutionarily, because it allows for a special kind of counterfactual called 

an intervention.  Once you know how one thing is causally connected to another, this knowledge 

allows you to deliberately do things that will change the world in a particular way.  Intervening 

deliberately on the world isn’t the same as just predicting what will happen next.  When we 

intervene, we envision a possible future we would like to bring about, and our action actually 
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changes the world.  Having a causal theory makes it possible to consider alternative solutions to 

a problem, and their consequences, before actually implementing them, and it facilitates a much 

wider and more effective range of interventions. This kind of sophisticated and insightful 

planning, then, involves a particularly powerful kind of imaginative capacity, and is tied to 

causal knowledge.   

Counterfactuals also play a role in learning causal knowledge itself.  A Bayesian view of 

learning (e.g., Griffiths & Tenenbaum, 2005; Griffiths, et al., 2010) suggests that children learn 

by generating possible patterns of evidence from alternative models in order to assess the fit 

between the outcome of these alternatives and the actual evidence.  Just as causally sophisticated 

planning involves a kind of imagination, so does the very process of learning on a Bayesian 

view.  In both cases, children must generate patterns of evidence from a premise that is not 

currently held to be true.  

This review focuses on relatively recent developments in the field of computational 

theories of human learning that have arisen over the past decade (e.g., Pearl, 2000; Spirtes, 

Glymour, & Scheines, 1993; Tenenbaum & Griffiths, 2003; Woodward, 2003), and much of the 

evidence that will be presented is research that links observation, intervention, and counterfactual 

reasoning as sharing a common foundation in causality.  We will therefore begin with a brief 

description of notions of causality in the “probabilistic models” framework, and outline a 

theoretical argument that suggests that the imagination is central to causal understanding.  We 

will then offer some evidence that suggests that human children are indeed rational Bayesian 

learners of causal models and discuss how this learning also implicates imaginative processes. 

We conclude with a discussion of how this work may be applied to the study of the imagination, 

more classically construed, such as the study of pretend play and imaginary companions.  We 
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will describe some research that is currently underway, and offer suggestions for future work to 

more directly examine the development of imagination from a Bayesian perspective. 

A Bayesian Picture of Causality (h1) 

Causal learning is a notorious example of the gap that exists between our experience of 

events and the truth.  The philosopher David Hume (1748) originally articulated this difficulty: 

all we see are contingencies between events – one event follows another.  How do we ever know 

that one event actually caused the other?  To make matters more difficult, causal relations are 

rarely limited to just two events. Instead, dozens of different events are related in complex ways, 

and deterministic causal events are very rare – often, a cause will make an effect more likely, but 

not absolutely certain (e.g., smoking causes lung cancer, but not always, and whether a particular 

smoker actually gets cancer depends on a complex web of other factors). 

Historically, psychologists believed that young children were precausal (Piaget, 1929).  

However, over the past twenty-five years, there has been a growing body of research that 

suggests that by the age of five, children understand a great deal about the complexities of the 

causal world, including the principles of everyday physics (e.g., Bullock, Gelman & Baillargeon, 

1982; Spelke, Breinlinger, Macomber, & Jacobson, 1992), biology (e.g., Gelman & Wellman, 

1991; Inagaki & Hatano, 2006), and psychology (e.g., Gopnik & Wellman, 1994; Perner, 1991).  

By 2-years of age, children begin to make causal predictions and provide causal explanations for 

physical phenomena in the world (e.g., Legare, Gelman, & Wellman, 2010; Hickling & 

Wellman, 2001), for the actions of others (e.g., Wellman & Liu, 2007), and even for imaginary 

or counterfactual scenarios (e.g., Harris, German, & Mills, 1996; Sobel & Gopnik, 2003).  

Further, because this causal knowledge has been shown to change in the face of new evidence 

(e.g., Gopnik, Glymour, Sobel, Schulz, Kushnir, & Danks, 2004; Slaughter, Jaakkola, & Carey, 
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1999; Schulz, Bonowitz, & Griffiths, 2006), it seems that causal knowledge is learned, 

undergoing change over the course of development (e.g., Gopnik & Meltzoff, 1997; Gopnik et 

al., 2004).  

Developmental theory theorists’ (e.g., Carey, 1985; Gopnik, 1988; Gopnik & Meltzoff, 

1997; Wellman, 1990; Wellman & Gelman, 1998) have proposed that this causal knowledge is 

represented by a set of theories that are revised over the course of development in a process that 

is analogous to scientific theory-formation and revision.  These theories support abstract causal 

reasoning and therefore enable the learner to make predictions, provide explanations, and even 

reason about counterfactuals in a variety of domains. Recently, that there has been major 

progress towards building a precise computational theory describing the representations and 

learning mechanisms that may account for theory change. 

 Much of this progress is a product of the current revolution in cognitive science 

concerning the rise of “probabilistic modeling” accounts of reasoning and learning (Chater, 

Tenenbaum & Yuille, 2006, Griffiths, et al., 2010; Pearl, 2001; Glymour, 2003).  Many of the 

ideas about probability that underpin these models were first formulated by the philosopher and 

mathematician, Reverend Thomas Bayes, in the 18th century, and are now being successfully 

applied to a very broad set of problems in developmental psychology, including induction and 

inference in learning (e.g., Glymour, 2003; Gopnik & Schulz, 2007; Tenenbaum, Griffiths, & 

Kemp, 2006), language acquisition in infancy (e.g., Chater & Manning, 2006; Tenenbaum & Xu, 

2000; Xu & Tenenbaum, 2007; Niyogi, 2002; Dowman, 2002; Regier & Gahl, 2004), and the 

development of social cognition (e.g., Goodman, Baker, Bonawitz, Mansinghka, Gopnik, 

Wellman, Schulz, & Tenenbaum, 2006; Baker, Saxe, & Tenenbaum, 2006), among others.  The 
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application of probabilistic models has successfully described and predicted patters of behavioral 

data across a variety of experimental paradigms.   

 The idea that is foundation for all of this work is that learning is based upon the assessed 

probabilities of possibilities. According to a Bayesian account, nothing is ever certain; instead, 

we form rational inferences based upon the fact that some possibilities are more likely than 

others.  As we accumulate more evidence about the underlying causal structure of the world, we 

systematically update the likelihood of all those possibilities. Therefore, a very small amount of 

evidence can effectively support one hypothesis over another.  Similarly, if the evidence is strong 

enough, even the most unlikely possibility can turn out to be true, regardless of our previous 

experience or theories about the world. The process of learning therefore represents the 

movement towards more informed inferences that better approximate the truth in a broader range 

of scenarios.  

This computational work in Bayesian inference has also begun to specifically examine 

the mechanisms that may underlie children’s learning about the causal structure of the world. 

There has been particularly impressive progress in constructing representations of causal 

structure that are well suited to Bayesian learning.  This work has begun to provide a solution for 

the problem of causal induction: how we derive rich, abstract representations from the sparse, 

concrete data that is available in our environment.  More specifically, these accounts describe a 

mechanism that allows theory-like knowledge to be derived from data in our environment while 

also explaining how our prior knowledge constrains the inferences that we make, and the 

evidence that we choose to attend to.  By actively uncovering the underlying causal structure of 

the world from evidence in the environment, causal learning may be conceptualized as the 

dynamic mechanism that underlies the process of theory change; the application of a theory to a 
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pattern of evidence is the process of assigning a particular causal representation to that evidence 

(Gopnik, 2000).  Children converge on the truth following multiple iterations of major 

conceptual changes in which existing theories about causal structure are revised, and eventually 

abandoned and replaced over the course of development. 

According to this account, children’s brains construct a kind of unconscious causal map, 

or a picture of the way the world works.  Many animals, from rats to human beings, construct 

“cognitive maps” of the spatial world, internal pictures of where things are in space (Tolman, 

1948).  Once spatial information is represented in this way, the learner is able to use that 

information much more flexibly and productively.  A map is a very efficient device for 

constructing different cognitive blueprints, pictures of what will happen as you move yourself 

around through space, and this facilitates the consideration of many complex spatial possibilities 

before committing to any particular course of action.  These spatial maps provide a coherent, 

non-egocentric, complex representation of the spatial relations among objects in the environment 

(O’Keefe & Nadel, 1979).  As we move through the world, we are able to update this 

information to reflect newly learned input about the layout of the environment.  Human beings 

also construct a different kind of map - a map of the complex causal relations among events that 

exist in the world (see Campbell, 1994; Gopnik, 2000).  These causal maps, which may be 

unique to human cognition, share many of the advantages of spatial maps – allowing us to 

represent the relations among objects, independent of our own actions.  

Causal Bayes Nets (h2) 

Ideas about the role of causal maps in human learning emerged roughly two decades ago, 

when a group of philosophers led by Clark Glymour and a group of computer scientists led by 

Judea Pearl simultaneously began formulating a mathematical account of how theory change 
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might work in artificially intelligent systems. The mathematical descriptions that they produced 

were called “causal graphical models,” more commonly referred to as “Bayes nets” (Pearl, 2000; 

Spirtes, Glymour, & Scheines, 1993, 2001).  This work has transformed the field of artificial 

intelligence and inspired new ideas about causation in philosophy.  Recently, developmental 

theory theorists, philosophers, and computer scientists have combined their efforts to describe 

how theory change could occur through the accumulation of knowledge that is represented in 

these Bayes nets, which collectively create causal maps of the known world (Gopnik, et al., 

2004; Gopnik & Schulz, 2007).  

Bayes nets represent causal relationships in directed acyclic graphs (see Figure 1).  These 

causal models represent a normative mathematical formalism that provides a way of representing 

causal structure, as well as a set of tools for making accurate predictions and effective 

interventions on the environment to uncover the underlying causal structure of the world.  Nodes 

in the graph represent the observable or hidden variables in a particular causal system, and the 

arrows represent the directed relationship that exists between these variables.  These 

relationships can take a variety of different functional forms: deterministic or probabilistic, linear 

or non-linear, generative or inhibitory.  The “parameterization” of the graph informs us about the 

nature of these functional relationships in more detail, including specific information about the 

relationships between nodes.  
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Figure 1.  A causal graph (Reprinted with permission from Gopnik, et al., 2004) 

The entire graph defines a joint probability distribution that exists over all the variables in 

the network – a distribution that describes the likelihood of the relationship between each of the 

variables.  For example, the graph above can tell us something about the probability of a value of 

W given a value of R and S.  The structure of these directed graphs therefore encodes 

probabilistic relations between variables that are updated based upon observed and inferred 

events that take place in the environment.  Causal Bayes nets are therefore able to facilitate 

human reasoning about the potential effects of our causal actions, because knowledge about the 

underlying causal structure permits the learner to make a range of predictions about future 

events.   

There are three basic causal structures that have been examined in the majority of 

research to date (see Figure 2): (1) common-cause models, in which a single cause X influences 

two effects Y and Z, (2) causal-chain models, in which an initial cause X affects an intermediate 

event Y that then influences the later effect Z, and (3) common-effect models, in which two 

causes X and Y independently influence a single effect Z.  More complex models may be 

constructed via combinations of these three.   

 

Figure 2. Three basic causal models (reprinted with permission from Hagmayer, 

 Sloman, Lagnado, & Waldmann, 2007) 
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By specifying the probability distributions of the events within the graph, it is possible to make 

predictions about related events, with each distinct type of causal structure (common-cause, 

causal-chain, or common-effect) supporting a unique pattern of predictions.  By encoding 

assumptions about dependence and independence among the represented variables in a directed 

graph, Bayes nets are able to provide the learner with a simplified representation of a particular 

causal domain  

More recent work (Griffiths & Tenenbaum, 2007) has extended the basic idea of causal 

Bayes nets to Hierarchical Bayes Nets. These representations capture higher-order 

generalizations about specific Bayesian graphical models.  To take an example from intuitive 

psychology, we may want to represent the higher-order fact that combinations of desires and 

beliefs cause actions.  We could do this by including the constraint that all Bayes nets that 

involve mental state variables will have arrows that go from beliefs and desires to actions, 

without specifying what those particular causal relationships will be.  Hierarchical Bayes Nets 

can therefore capture the idea of “higher-order” framework theories, or representations that are 

more abstract than specific theories, in a computational way (Wellman and Gelman, 1998).   

 For the last ten years, developmental cognitive scientists have explored the hypothesis   

that children represent causal relationships implicitly in the form of causal Bayes nets and learn 

new causal representations from observations of correlations and interventions.  According to 

this hypothesis, as children develop, they actively fill in the probabilities associated with causal 

events.  Learning the causal structure that is represented in Bayes nets requires an associated 

learning algorithm that includes a priori beliefs about what constitutes a plausible cause, and 

expectations about how a given causal structure leads to observed events in the world (e.g., 

Gopnik, et al., 2004; Gopnik & Tenenbaum, 2007; Schulz, Bonowitz, & Griffiths, 2007).   
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According to the Bayesian account, the learner optimizes their performance by 

constructing a hypothesis space H of all possible causal models.  Given some data d, the learner 

computes a posterior probability distribution P(h | d) representing a degree of belief that each 

hypothesis h corresponds to the actual causal structure of the world.  These posteriors depend 

upon the prior probability P(h) and the likelihood P(d | h) that you would observe d if h were 

true.  This computational approach is summarized in Bayes’ rule: 

 

This formula specifies how posterior conditional probabilities of a particular hypothesis being 

true (given the data) are computed from the prior probability of the hypothesis multiplied by the 

likelihood of those data assuming the hypothesis is true.  Because Bayesian learning uses 

structured priors and likelihoods that are drawn both from the learner’s background or innate 

knowledge about causal structure, as well as observed or hypothetical data, variations on this 

simple algorithm provides a natural framework in which to consider how children modify their 

existing knowledge in the face of new evidence1.   

 A typical Bayesian causal learning algorithm may proceed as follows.  Take the current 

best hypothesis about the world (i.e., reality).  Modify that hypothesis to produce an alternative 

hypothesis (or several).  Generate the probability distribution for evidence that would result from 

that modified model, and do the same for the actual model.  Then use a Bayesian inference 

procedure to compare the probability of the actual evidence under the previous hypothesis and 

the new modified hypothesis.  If the posterior probability of the new hypothesis is greater, accept 

that hypothesis.  



   
 Causality and Imagination 

Combining this Bayesian learning algorithm with causal Bayes nets offers an 

extraordinarily powerful means for optimized learning in both artificially intelligent systems and 

human minds.  If the learner has two different possible theories about the world – two possible 

causal maps – Bayesian inference may be used to select the more likely of these two 

possibilities, and use this inference to motivate rational action.  Using the correct map facilitates 

accurate predictions.  For example, if I think that smoking causes cancer, I can predict that 

preventing smoking will lower the probability of cancer.  If it doesn’t cause cancer – if the causal 

map is different – then preventing smoking won’t have this effect, and I can use this information 

to generate a more accurate causal map of this relationship.  If, however, the causal map 

successfully predicted the evidence that I observe, then the probability that that is the correct 

map will go up when making future inferences.  Observing new evidence therefore makes one 

map more likely than another: if the likelihood of cancer goes down when people stop smoking, 

the likelihood that smoking causes cancer goes up.  Causal maps therefore provide the learner 

with a method for making predictions about the structure of the world.  By comparing those 

predictions with what is actually observed, the learner is able to systematically determine the 

likelihood that a particular causal map is actually true.   

To summarize the Bayesian perspective on causal learning, children undergo a series of 

major conceptual changes in which early theories are abandoned and replaced over the course of 

development.  This theory change is facilitated via updating the probabilistic independence and 

conditional independence relations among the variables that are represented in the causal Bayes 

net, and the resulting probability associated with the underlying causal model.  These 

representations and associated learning algorithms allow the individual to both learn causal 
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structure from patterns of evidence and to predict patterns of evidence from their existing 

knowledge of causal structure. 

Even more important however, using directed graphs to represent knowledge about 

causal structure allows the learner to intervene on a particular variable within a causal system. 

These interventions lead to predictable changes in the probabilistic dependencies over all of the 

variables that exist in the causal structure, thus allowing the learner to explore the contingencies 

that exist between nodes of the graph.  Access to representations of causal structure therefore not 

only allows the learner to make wide-ranging predictions about future events, but also provides 

the means for intervening on the environment to bring about new events or imagine novel ways 

of arranging the world.  

Causal Relationships Imply Counterfactuals (h1) 

While the imagination may not fit with earlier notions of causality, the Bayesian account 

of causality suggests that imagination and the consideration of counterfactual possibilities are 

central to causal structure.  A fundamental feature of Bayes nets is that they allow the learner to 

go beyond the way that the world actually is and engage with possibility – the way that the world 

could be.  Philosophers (Lewis, 1986; Mackie, 1974) have long suggested that new causal 

relationships are learned by explicitly engaging with counterfactual alternatives.  According to 

the interventionist account that is implicit in computational models like causal Bayes nets, causal 

relations may be understood in terms of a counterfactual claim: the proper interpretation of the 

claim X causes Y is that, all else being equal, if you intervened to change X that would lead to a 

change in Y.  The causal arrows in a Bayes net are therefore defined in terms of possible 

interventions.  These interventions need to be conceivable, though not necessarily feasible; a 

point that differentiates this account from earlier notions of causality based upon generative 
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transmission (e.g., Shultz, 1982). Because the causal relationships exist between individual 

variables, every existing causal relationship implies the existence of a related counterfactual.   

In fact, this is the precisely the point that distinguishes causal relationships from simple 

correlations.  While a correlation indicates that two events co-occur, a causal relation has the 

additional requirement of counterfactual dependence: in some other possible world, in which the 

cause had not initiated the underlying causal mechanism, the effect would not have occurred at 

all.  By identifying the causal structure, causal Bayes nets support inferences about the effects of 

real and imagined interventions on the variables (Schulz, Kushnir, & Gopnik, 2007).  Knowing 

the causal graph therefore allows you to predict the outcome of interventions, regardless of 

whether you have ever observed them being performed or even whether they could ever be 

performed.  Causal relationships actively generate possible worlds, some of which are factual 

(they exist) while others are counterfactual (they do not exist).  While we do not necessarily 

engage in conscious tracking of counterfactuals when we are reasoning causally, the activity of 

imagining brings these underlying counterfactuals to the surface (Sloman, 2005).  Imagining new 

possible worlds may therefore be defined as the process by which implied counterfactuals 

become explicit.   

The implications of this account were tested in a series of experiments to see whether 

children could use the patterns of dependence and independence among variables to infer causal 

structure, make novel predictions and perform appropriate counterfactual interventions (Gopnik, 

Sobel, Schulz, & Glymour, 2001; Schulz & Gopnik, 2004).  In one such experiment, 

preschoolers were shown three flowers that were sometimes associated with a puppet sneezing.  

One flower (A) make the puppet sneeze 100% of the time, while the other flowers (B and C) 

only made the puppet sneeze when presented along with flower A (sneezing was unconditionally 
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dependent upon flower A; sneezing with flower B and C was independently conditional upon 

flower A).  This structure allows the learner to make predictions about possible interventions.  

An intervention on flower A will change the probability of B and C generating the sneeze, but an 

intervention on flower B or C will not have this same effect.  When children were asked to 

ensure that the puppet did not sneeze, children successfully used the pattern of conditional 

dependence and independence and removed flower A from the bunch.  Note that they did this 

even though they had never seen the flower removed before nor observed the consequences of 

that action. To solve this problem they had to first infer the right causal model from the data, and 

then actively use that model to generate the imagined consequences of a possible action. 

The “do operator” (h2) 

The causal modeling framework provides a means for representing these interventions.  

Interventions alter the structure of the causal model by cutting the manipulated variable from its 

usual causes.  To do so, interventions are treated as variables with certain special properties: they 

cannot be influenced by other causal factors in the graph, and they act to fix the value of the 

variable of interest.  Pearl (2000) developed a mathematical means for representing an 

intervention via the inclusion of a “do operator.”  The do operator modifies a causal graph by 

disconnecting a variable from its parent causes, thereby nullifying the influence of these causes, 

while keeping the rest of the graph intact. Once the variable is cut from its causes, the 

intervention acts to set the value of the variable in a particular causal model: we use the do 

operator to set X to some value x, or do(X = x). The effects of an intervention are then computed 

using the probability calculations on this “mutilated” graph in the same way that it would be 

computed on the original graph (see Pearl, 2000; Sprites, Glymour, & Scheines, 1993 for a 
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detailed description of the mathematics, or see Sloman, 2005 for an accessible overview).  Pearl 

(2000) aptly refers to this intervention as performing “graph surgery” (see Figure 2). 

                                 

Figure 2.  The “mutilated” version of the graph that appeared in Figure 1, following an 

 intervention on X (reprinted with permission from Gopnik, et al., 2004) 

 Knowing that X is a direct cause of Y means that if the rest of the causal graph is held 

constant then intervening to change X to x should change Y to some value y (Pearl, 2000; 

Spirtes, Glymour, & Scheines, 1993; Woodward, 2003).  There is substantial evidence that adults 

learn causal relationships more quickly and efficiently when they are able to perform these types 

of interventions, rather than relying on observation alone (Lagnado & Sloman, 2004; Sobel & 

Kushnir, 2006).  These interventions enable the learner to differentiate among the possible causal 

structures that match the evidence that we observe in the world by creating a scenario in which 

the occurrence of an event is independent from its normal causes.  While predictions regarding 

the outcome of observed phenomena are based upon the parameters outlined in the original 

causal graph, predictions regarding the outcome of interventions are based upon the parameters 

that appear in the mutilated causal graph.  Therefore, a central feature of causal Bayes net 

learning algorithms is that they works in both directions: you can use evidence from 

interventions to infer the underlying causal structure and you can use knowledge of causal 

structure to predict the outcome that should result from an intervention.  While observation and 
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intervention support different predictions and inferences, both are derived from the same basic 

process in the Bayesian model of causal learning. 

While graphical surgery allows for the representation of actual interventions that take 

place in the physical world, this same process also provides a means for representing 

counterfactual interventions – imagined interventions that take place inside our heads.  In 

counterfactuals the current state of the world is modeled and then intervened upon to construct 

the fictional scenario.  Several studies have shown that adults can make accurate inferences 

about the effects of hypothetical interventions based upon information about causal structure 

(Sloman & Lagnado, 2005; Waldman & Hagmayer, 2005).   

In one such study, Waldmann & Hagmayer (2005) assessed adult’s ability to derive 

predictions for hypothetical interventions from fictitious causal models presented in a medical 

scenario.  Adult participants were presented with one of two possible causal models: either a 

common-cause model or a causal-chain model.  In the common-cause model, participants were 

informed that raising the level of hormone P in a chimpanzee causes the level of hormones S and 

X to increase.  In the causal-chain model, participants were informed that raising the level of S in 

a chimpanzee causes P to increase, which then causes X to increase as a result of the increase in 

P.  After this learning phase, participants were provided with observational data for 20 

chimpanzees that illustrated the probabilistic relationships between the causes and effects.   

All participants were able to successfully use this data to assess the parameters of each 

causal model in making predictions about hypothetical observations and interventions.  More 

tellingly however, participants were highly sensitive to the different predictions that are 

generated for observations and interventions on each of these distinct causal structures.  For 

example, when asked to imagine that the chimpanzees were injected with a substance that either 
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increased or lowered the level of S (an intervention on S), participants were able to differentiate 

their predictions between the two models.  In the causal-chain model, increased levels of S 

would lead to a higher probability of increased levels of P and X, regardless of whether this 

increase in S was observed to naturally occur or due to the intervening effects of an injection.  In 

the common-cause model however, participants demonstrated their understanding of the 

dissociation between instances when increased levels of S were observed to naturally occur and 

instances when increased levels of S were created via injection.  The increase in S only led 

participants to infer an increase in P and X in the cases in which this increase in S was observed, 

but not for the cases in which the increase in S was due to the effects of an injection.  

The results of this experiment provide strong evidence that adult participants rely on both 

observed evidence and knowledge of the underlying causal structure (represented in a causal 

graph) when generating predictions about hypothetical scenarios.  This supports the proposal that 

human cognition modifies current representations of causal structure in order to predict the 

outcomes of hypothetical interventions or reason about counterfactual states.  Using this method 

of causal reasoning, we are therefore able to represent, construct, or modify a causal map of any 

possible world that we are able to imagine: fictional worlds, pretend scenarios, thought 

experiments, hypotheticals, future states, etc.  Engaging in graphical surgery of our causal maps 

allows us to consider counterfactual possibilities (the “what ifs” and “if onlys” of our 

psychological lives), and accounts for the fact that the human concept of causation includes 

causal relationships that hold regardless of our ability to actually carry out a particular 

intervention.  Assessing whether the relationship between X and Y is causal does not depend 

upon whether an intervention may actually be performed on X, but instead depends upon what 

would happen to Y if that the intervention were to be performed (Woodward, 2007).   
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We propose, therefore, that through the very same method that is used to represent 

interventions in the actual world, children and adults are able to represent and manipulate the 

causal relationships that exist within imagined spaces.  To do so, the learner simply takes a 

causal model of the actual world and changes the value of one or several variables according to 

the counterfactual assumption.  This cuts the arrow that connects the variable to its normal 

causes.  As a result, all other causal influences are rendered inoperative in this imagined space.  

The graph that exists following the imagined intervention represents the causal structure of the 

possible world that is being entertained.   

For example, you may have forgotten to tie your shoelace when you left the house this 

morning, which led to your tripping and twisting your ankle on your way to school.  In order to 

engage in a counterfactual analysis, you would begin by modeling the actual event, and make a 

series of inferences about the consequences within this causal model (e.g., you will not be able to 

go mountain climbing tomorrow).  Next, you can model what would have happened had you 

stopped to tie your shoe before leaving the house this morning.  This is done via an imagined 

intervention that fixes the value of the variable that represents the state of your shoelace, thus 

altering the outcome of the causal events in the model.   

Modeling of counterfactuals therefore requires updating the current causal model at least 

two times: once to calculate the probabilities of the events conditional on the observed facts, and 

a second time to reanalyze the probabilities in the mutilated graph.  Using this mutilated graph, 

we may make inferences about novel effects that would likely occur in the possible world that 

we have generated, and even make further (potentially dramatic) changes to the causal structure 

through additional imagined interventions.  The do operator therefore facilitates reasoning about 

fictional possibilities without necessarily impacting the beliefs that we hold about the actual 
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world.  However, we may choose to incorporate this counterfactual information to our causal 

knowledge, use it to inform our future decision-making or planning, or apply it to aid in 

reasoning about the actual state of the world.   

 According to this interventionist account of causality, children (and adults) are equipped 

with all of the tools they need to reason about hypothetical interventions and counterfactuals: 

generating a counterfactual is causally equivalent to engaging in an imaginary intervention on a 

causal model.  No special cognitive resources are required for imaginative acts.  Reasoning 

counterfactually is simply the process of making an assumption, and then following the various 

causal implications of that assumption to generate some novel pattern of effects.  This may be 

done to generate a near counterfactual, by making a realistic assumption that could have easily 

been true (e.g., If you had tied your shoelace then you would not have tripped and twisted your 

ankle.).  In other, more distant counterfactuals, an assumption is made that is generally known to 

be false and the causal implications are traced through to a set of counterfactual effects.  This is a 

familiar task that is often used in the construction of fictions: an author makes a particular 

assumption about the world (e.g., that robots become sentient; that time travel exists; that your 

toys come alive when you leave the room) and then follows the implications of that assumption 

downstream.   

 Part of the reason that we find these possible worlds so engaging is probably because 

they utilize our natural ability to reason counterfactually, to play with our causal models.  As 

mentioned previously, one of the highly adaptive benefits in engaging with these imaginary 

causal structures is that we can intervene on the fictional world without changing our beliefs 

about the real world: these two worlds are kept distinct.  These imaginative activities provide a 

wealth of useful information about a variety of possible outcomes without actually requiring 
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interventions on the real world.  The information that is gathered through imaginative 

intervention may then be applied to producing change in the real world. 

 Imagining interventions and playing with causal maps: Bayes nets in cognitive 

development (h1)  

A growing body of research suggests that children are making and using causal maps of 

the world, manipulating them to imagine new possibilities, and applying this information to 

make new inferences and perform new actions on the environment (e.g., Gopnik et al., 2001; 

Schulz & Gopnik, 2004; Schulz, Bonowitz, Griffiths, 2007; Schulz, Gopnik, Glymour, 2007).  

One method that has been used to explore this phenomenon is to introduce 3- and 4-year-old 

children to novel causal events, and see whether they use that knowledge to make predictions, 

design new interventions, and consider new possibilities, including counterfactuals. 

The Blicket Detector (h2)   

Many of the early studies investigating causal inference in young children utilized a 

novel device developed by Gopnik & Sobel (2000).  This device – the blicket detector – lights up 

and plays music whenever a “blicket” is placed on it.  Some objects are blickets, and some are 

not, but external appearance is not an obvious indicator.  Child participants watch a series of 

trials in which one or more objects are placed on the blicket detector and the effect is observed.  

Participants are then asked to indicate which objects are blickets, use this information to “make 

the machine go,” or demonstrate their knowledge by generalizing to a novel blicket detector. 

Using this method, a variety of researchers have demonstrated children’s ability to correctly infer 

the causal relationship that exists between the objects and the blicket detector after very few 

repeated observations (Gopnik et al., 2001; Sobel, et al., 2004; Gopnik & Schulz, 2007). 
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In one of the first of these studies (Gopnik, et al., 2001), 3- and 4-year-old children were 

taught that a particular block was a “blicket.” These children were then shown that the blicket 

combined with a non-blicket also made the machine go (see Figure 3).  When asked to make the 

machine go, children selected only the blickets.  More tellingly, in a subsequent experiment, 

when children were asked to make the machine stop, they suggested removing the blicket, even 

though they had never observed the machine being stopped this way during training.  These 

children were able to use the new causal information to draw the correct inferences about the 

underlying causal mechanism.  This included the counterfactual conclusion that removing the 

blicket would make the machine stop.  Children combined their prior knowledge about physical 

causality with their newly learned causal knowledge about blickets and detectors, and were able 

to imagine what might happen if you removed the blicket from the machine.

 

Figure 3.  Blicket detector procedure used in Experiment 1 of Gopnik, et al. (2001) 

 (reprinted with permission). 

Next, in a series of experiments conducted by Schulz & Gopnik (2004), children were 

shown a blicket detector with a switch attached.  Again, children had no knowledge of how the 

new machine worked.  Children were then asked whether the machine would go when you 

flipped the switch, or whether it would go if you simply told the machine to go.  At pre-test, all 

children said that the switch could make the machine go, but that speaking to the machine would 
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not have the same effect.  These children had already learned that machines work differently than 

things with minds.  However, after they saw that talking to the machine causes the machine to 

go, children answered very differently.  When asked to make the machine stop, children told the 

machine to stop, instead of flipping the switch.  Further, when these children were asked to 

predict what would make a new machine go, they were much more likely to suggest talking to 

the machine as a possible cause than before they had observed this causal relationship.  By 

providing children with new causal knowledge, we can change the possibilities that they will 

spontaneously entertain, and change the types of actions that they will take.   

By the time children are 4-years-old, they engage in far more complex experiments with 

the causal world.  In an experiment conducted by Schulz et al (2007), 4-year-olds were 

introduced to a different novel toy: a box, with two, interconnected gears on top and a switch on 

the side.  When you flip the switch, the gears both turn together.  This observation alone is not 

enough to provide information about how the toy works.  By removing one of the gears however, 

it becomes clear that the underlying causal structure of the gear toy is a causal chain: flipping the 

switch turns gear B, but not gear A; gear B is responsible for causing the movement of gear A.  It 

is only by exploring the toy that the child would be able to differentiate between a causal chain 

structure and a common-cause structure. 

After observing the initial demonstration, four-year-olds were instructed to determine 

how the toy works, and were then left alone with the toy.  These children played with the gear 

toy, and broadly explored the box, gears, and switch.  While all children engaged in a large 

number of non-informative actions, many of the children were also able to solve the problem in 

the context of their free play.  Children were equally good at learning all of the causal structures 

that were presented, and in all cases, when children were shown the appropriate evidence, they 
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chose the correct structure more often than the other structures.  Furthermore, like adults, 

children were able to predict the outcomes of hypothetical interventions for all the underlying 

structures (Schulz, Gopnik & Glymour, 2007).  They could tell you for example what would 

happen if the gear A made gear B go, and you removed gear A. These studies provide evidence 

that as children intervene on the world and observe a range of interventions performed by other 

people, they are able to infer a variety of different causal structures from the patterns of 

evidence. They can even make predictions regarding fictitious sets of evidence from their 

knowledge of causal structure. 

Another critical connection between causal knowledge and imagining new possible ways 

that the world could work is our ability to infer the existence of unobserved or invisible causes 

that underlie events that we observe.  In order to examine this ability through the lens of the 

causal Bayes net formalism, children were introduced to yet another novel experimental 

apparatus called a “stickball machine” (Kushnir, Gopnik, Schulz, & Danks, 2003; Schaefer & 

Gopnik, 2003).  This machine operated by moving two stickballs up and down either 

independently or simultaneously without a visible mechanism (see Figure 4).  The experimenter 

could also visibly intervene on the machine by pulling on the sticks in view of the child 

participant.  This machine was used to test whether children would infer the presence of an 

unseen cause when interventions on either stickball failed to appropriately correlate with the 

movement of the other.  To do this, children were shown that the movements of stickballs A and 

B were probabilistically correlated with one another.  Participants then saw that pulling up on A 

did not move B, and that pulling up on B did not move A.  According to the Bayes net 

formalism, if the movements of A and B are dependent upon one another, but intervening on A 

(do[A]) failed to increase the probability of B (and vice versa), then the learner should infer the 
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existence of an unobserved common cause.  This is precisely what children did, suggesting that 

some invisible mechanism was causing the movement to occur.  This type of causal learning 

process may therefore begin to explain how it is that children and adults are easily able to 

imagine novel theoretical causes (including magical entities) when available data fails to provide 

conclusive explanations for phenomena in the world.   

                                              

Figure 4.  The “stickball machine” used in Kushnir, et al. (2003) (reprinted with 

 permission) 

Causation and counterfactuals in childhood (h2) 

 In the studies presented above, children are using the causal structure of the world to 

generate one particular kind of counterfactual, namely, a counterfactual that involves considering 

possible interventions on the world and their consequences.  Children develop causal theories of 

the world from a very early age, and that knowledge allows them to actively intervene on the 

world.  But what about more classic “backwards counterfactuals” – counterfactuals about what 

might have happened in the past, rather than about what might happen in the future?  If causal 

knowledge and counterfactual thinking go together, then this might explain how young children 

have the parallel ability to generate backward counterfactuals and to explore possible worlds that 

do not exist. 

Child's View

 Back View 
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 Developmental psychologists have begun to examine children’s understanding of this 

link between causal and counterfactual reasoning.  In early work, Harris, German, and Mills 

(1996) conducted a series of studies in which 3- and 4-year-old children were presented with 

scenarios in which they were asked to reason about a causal sequence (e.g., a character walks 

across the floor with muddy boots making a mess of the floor).  These children were asked 

counterfactual questions about what would have happened had the events occurred differently.  

Children were able to answer correctly, demonstrating their early ability to appreciate the link 

between causal and counterfactual claims, and employ counterfactuals in everyday reasoning.  In 

a subsequent experiment, Harris, et al. (1996) presented children with scenarios in which altering 

the antecedent would prevent an accident from occurring (e.g., the character’s fingers being 

covered with ink).  Again, children were able to offer appropriate responses regarding why the 

accident occurred, and what could have been done to prevent it (e.g., using a pencil instead of a 

pen).  As these examples show, children are able to evaluate fictional information in light of their 

background knowledge regarding the causal structure of the world, and rely on inferential 

processes to update this information accordingly.  

 In later work, Sobel and Gopnik (2003) demonstrated that children who are able to make 

correct predictions regarding hypothetical future scenarios were also able to reason correctly 

about counterfactual claims in the same domain.  This provided some evidence that once 

children have an accurate causal map (an understanding of causal structure in a particular 

domain), they are able to make predictions and engage in counterfactual reasoning.  In a later 

study, Sobel (2004) compared children’s ability to generate explanations of events in a particular 

domain with their ability to consider counterfactuals that would produce these events.  To test 

this, 3- and 4-year-old children were presented with stories involving possible and impossible 
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events (events that violated underlying causal principles) across physical, biological, and 

psychological domains.  They were then asked to provide an alternative action that could have 

been taken to result in the occurrence of each of the possible and impossible events for the three 

domains.   

 Results of this study demonstrated that children are able to provide explanations for 

impossible events, and even generate appropriate counterfactuals for the possible events.  While 

younger children experienced some difficulty stating that there was no counterfactual alternative 

for impossible events, results did indicate a strong relationship between children’s ability to 

explain impossible events in each domain and their accurate perception that no counterfactual 

could be generated for these impossible events.  In other words, success in producing domain-

specific explanations was correlated with successful recognition that counterfactuals cannot be 

generated to produce impossible events.  Sobel (2004) concluded that the maturity of children’s 

causal knowledge in a domain influences their fluency with counterfactual reasoning, and the 

types of counterfactuals that they will tend to produce.  Other research that has been conducted 

examining children’s causal explanations in a variety of domains has provided additional support 

for this claim, demonstrating that the knowledge structures that children employ in generating 

causal explanations are coherent and support counterfactuals (Gopnik & Melt off, 1997; Gopnik 

& Wellman, 1994; Wellman & Liu, 2007).   

 The implication of these findings is related to the proposal that adults do not tend to 

propose counterfactual scenarios that violate physical laws (Cheng & Novice, 1992; Harris, 

2000; Selah, et al., 1995).  For example, adults who are told about a plane crash do not 

spontaneously consider how this outcome may have been different had gravity suddenly 

discontinued to have the same effect.  These far counterfactuals tend to be automatically rejected 
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during counterfactual reasoning about reality.  Thinking counterfactually may therefore depend 

on the way that children and adults represent their causal knowledge in a given domain.  This 

contrasts with prevailing accounts of counterfactual reasoning that argue that it is a general 

ability associated with children’s developing understanding of mental representation (Guajardo 

& Turley-Ames, 2001; Riggs, Peterson, Robinson, & Mitchell, 1998).  Instead, children’s 

developing understanding of causal structure in each domain of knowledge influences the 

counterfactuals that they consider and spontaneously generate (Sobel, 2004).  This link between 

causal knowledge and imagination might also explain the cases where children do not think 

counterfactually. Children might sometimes fail to think counterfactually because they don’t 

have the right kind of causal knowledge, not because they’re unable to imagine possibilities, just 

as it is difficult for most adults to explain what could have been done to prevent the space shuttle 

crash, or what should be done to prevent it in the future. 

Pretense and Causality (h2) 

While the role of pretend play in cognitive development is not well understood, the link 

between the ability to think counterfactually and causal knowledge may underlie young 

children’s engagement in pretense activities as well.  The majority of research examining pretend 

play has focused on the link between pretense and theory of mind (Leslie, 1987; 1994; Lillard, 

1993; Nichols & Stich, 2003).  Because pretend actions have clear parallels with actions that are 

based upon false belief, and because pretend play depends on the child’s ability to decouple from 

reality to consider alternative states, it has long been assumed that pretend play is a product of 

the development of theory of mind (Leslie, 1987).   

However, another way to view pretend play is to consider theory of mind as just one facet 

of a broader category of causal reasoning.  From 2- to 6-years of age, children discover facts 
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about how their own minds and the minds of others work: they formulate a causal map of the 

mind.  They start to understand the causal connections between desires and beliefs, emotions and 

actions, just as they start to understand the connections between blickets and blicket detectors.  

According to this more general picture, pretend play reflects possible ways that the world might 

be.  In particular, both learning and reasoning in the probabilistic models framework require the 

ability to generate patterns of evidence from an initially false premise -- the basic cognitive 

ability behind pretense.  In Bayesian learning, children consider an alternative causal model that 

initially has a lower probability than the model they currently adopt.  Then they must generate a 

sample of evidence from that alternative model and compare it to the current “true” model and 

the current evidence. If the new model was more likely to generate the observed evidence than 

the old model, it will replace that model and become the new “true” model.  In reasoning about 

interventions, children must similarly mentally “set” a variable to a new value and then consider 

the down-stream consequences of that change. 

Pretend play may be therefore understood not as a product of theory of mind, but as a 

precocious display of children’s developing abilities in counterfactual reasoning – setting false 

premises (assuming a possible world in which there is “tea” inside the empty cup), and following 

the effects of this counterfactual premise downstream.  We are able to modify our existing causal 

maps without changing our beliefs about the causal structure of the world, and this capacity both 

supports pretend play and allows children to exercise this essential cognitive tool.  Therefore, in 

much the same way that exploratory play allows children to discover the causal structure of the 

physical world, pretend play likely facilitates the early development of counterfactual reasoning 

abilities – which are essential to the probabilistic model of causal learning and to Bayesian 

learning.  From this perspective, not only does causation give fantasy its logic (young children 
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are quite proficient at tracking the causal rules in fictional worlds) (e.g., Harris, 2000; Onishi, 

Baillargeon, & Leslie, 2007; Skolnick & Bloom, 2006), but the act of engaging in fantasy helps 

causal learning to occur.  According to this model, pretend play may be interpreted as an engine 

of learning in development, in which children are able to practice their developing skills in 

reasoning counterfactually about the causal world in a variety of domains.  

This relationship has only recently begun to be empirically explored.  Buchsbaum & 

Gopnik (unpublished data) have been working on testing the hypothesis that pretense may act as 

a form of counterfactual causal reasoning, allowing children to explore causal “what if” 

scenarios in imaginary spaces.  In one study, preschool children were taught a novel causal 

relationship, in which one object (a “zando”) activates a blicket detector machine, while another 

object (a “non-zando”) does nothing.  After learning these relationships, children were asked two 

explicit counterfactual questions: (1) “If the zando were not a zando, would the machine play 

music?” and (2) “If the non-zando were a zando, would the machine play music?”  The majority 

of children answered both counterfactual questions correctly.  In the second phase of the 

experiment, children were introduced to a box and two blocks.  They were asked to pretend that 

the box was the machine and that one block was a zando, while the other block was a non-zando.  

After placing each block on the pretend machine, children were asked whether there was music 

playing in the pretense activity.   

Children’s causal inferences about the pretend objects were generally consistent with the 

objects’ real causal roles, demonstrating children’s ability to maintain newly learned causal 

relationships within the context of a pretense scenario.  More tellingly, the children who 

answered the counterfactual questions incorrectly were much more likely to answer the pretense 

questions incorrectly.  These children were attending to the true identity of the blocks; they were 
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less likely to say that there was pretend music when the pretend zando was placed on the 

machine.  These preliminary results do seem to support the link between counterfactual 

reasoning abilities and engagement in causal pretense, and this relationship is currently being 

further explored in our lab.  

Along these same lines, children’s developing ability to think counterfactually and reason 

about causality may also underlie why young children create imaginary companions.  Imaginary 

companions may be construed as an elaborate example of psychological counterfactuals; they 

reflect possible ways that people might be, and possible ways they might act in the world under a 

variety of constructed circumstances.  This relationship explains Taylor’s (1999) findings that 

children with imaginary companions tend to have a more advanced theory of mind than other 

children of the same age, despite similarities in overall intelligence.  Further, the shift from 

imaginary companions in early childhood to the “paracosms” that are more commonly observed 

in late childhood may also reflect shifts in children’s causal knowledge of other people.  Older 

children, who already understand how individual minds work, become more interested in what 

happens when minds interact in socially complex ways.  These older children are no longer 

primarily interested in understanding individual people.  Instead, they are trying to understand 

the elaborate social networks that will be crucial for their adult lives.  Paracosms are a way of 

exploring counterfactual societies, just as imaginary companions are a way of exploring 

counterfactual minds (Gopnik, 2009).   

We propose therefore, that children pretend so much because they are learning so much.  

Our causal maps allow us both to understand the existing physical and psychological world and 

to invent and realize new physical and psychological worlds.  The line between a fiction and a 

close counterfactual is one of degree rather than kind: fictions are counterfactuals that just 
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happen to be further away from our real world than other possible worlds.  It is possible that by 

engaging in far counterfactuals, it allows children to fill in parts of their developing causal maps 

that are not accessible through real interventions and observations.  By exploring the far 

boundaries of the possibility space – causal events with particularly low probabilities – children 

may be acting to highlight the areas that lie outside the boundaries of their limited experience in 

the real world. 

Conclusion (h1) 

 In this chapter, we have outlined the Bayesian picture of causality that has had a large 

impact on theories about human learning about the real world.  However, this picture of causality 

also carries far-reaching implications for the study of the imagination.  The Bayesian theory of 

learning depends upon the idea that children can imagine alternatives to their current causal maps 

of the world.  Children construct alternative hypotheses about what the world is like, and they 

compare and contrast different possible causal maps.  As children’s theories change over the 

course of development, and their causal maps become more accurate, with parameters that more 

closely approximate the events in the world, the counterfactuals that they are able to produce and 

the possibilities that they are able to envision become richer.  These counterfactuals allow 

children to create different worlds, and even intervene to make some of those alternatives real.  

In this way, imagination can be interpreted to depend in large part on causal knowledge; in the 

same way that developing causal knowledge depends upon the ability to imagine.  

 On the probabilistic model view when children represent causal structure, they have all 

the necessary cognitive tools for reasoning about counterfactuals and for representing imaginary 

worlds.  According to these ideas about the process underlying human learning, there are no 

special cognitive resources that are required to explain imaginative acts.  Instead, reasoning 
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counterfactually is simply the process of making an assumption, and then following the various 

causal implications of that assumption to generate some novel pattern of effects.  Fictional 

worlds that are less similar to the real world, or further away in the space of possibilities, simply 

contain fewer causal relations that are also true of the real world.  However, by relying upon our 

inference systems, we are able to draw true conclusions from these false premises, and use this 

information to inform our reasoning about the real world.  When we engage in an imaginative 

act, we simply produce a counterfactual premise, and proceed from there – generating the causal 

consequences that would be appropriate if the premise were indeed true.  In the space of possible 

causal graphs, the imaginative world has a low probability, but follows the same causal laws and 

has the same relationship to the data. 

 This theory of causal reasoning provides an account of the cognitive mechanism that may 

underlie this process of inferential elaboration. According to this interpretation of the 

imagination, reasoning about possible worlds is no different from reasoning about the actual 

world – and in fact, with the important exception of the false premises upon which the 

counterfactual is based, the causal structure of the imaginary space does tend to conform to the 

structure in the real world (e.g., Onishi, Baillargeon, & Leslie, 2007; Harris, 2000; Harris & 

Kavanaugh, 1993; Weisberg & Goodstein, 2009).  By incorporating the imaginary realm, we are 

able to learn about the causal structure of the world without necessarily acting in the physical 

world.  In this way, learning the truth about the world and creating new worlds represent two 

sides of the same coin.  Causal theories in childhood tell us both what is true and what is 

possible.   

Future directions 
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1. Considering the amount of information that children are exposed to in the form of 

fictional stories and imaginary representations of the world, it will be important to 

understand the inferences that underlie children’s causal learning in this domain.  To 

begin to address this issue, the authors (Walker & Gopnik, unpublished data) are 

currently exploring the following questions: When do children choose to transfer causal 

information from the fictional space to the real world, and do contextual cues influence 

generalization to the real world?  Does the likelihood that children will generalize causal 

structure from the fictional to the real world vary based upon the perceived proximity of 

the causal map supporting the fictional world to the causal map of the real world?  Does 

this sensitivity to the similarity between causal maps change over the course of 

development?  Does the process of learning from fictional information fit into a Bayesian 

framework? 

2. What is precise the nature of the relationship that exists between counterfactual reasoning 

and pretend play?  

3. Are there certain causal structures that are impossible to learn without engaging with far 

counterfactuals? Do we use far counterfactuals to explore the boundary of the possibility 

space that would be otherwise inaccessible to us (e.g., the possible worlds that are 

constructed for the purposes of thought experimentation)?  

4. How can the Bayesian account of causality be used to explain the phenomenon of 

imaginative resistance?  Are there certain facts that are so causally central to the 

representation of the world that they simply cannot be counterfactualized? 
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5. What is the role of immaturity for imaginative activities during development?  Is there a 

correlation between lack of inhibition in attentional processes and the tendency to more 

broadly explore the space of possible counterfactuals?   

Endnotes 
1 This is not to say that children have conscious awareness of these graphical representations or 

Bayesian learning procedures.  Instead, this proposal attempts to outline causal learning at the 

computational level (see Marr, 1982 for an explanation of the levels of analysis in scientific 

explanation). 
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